Troglitazone stimulates beta-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1A receptor.
نویسندگان
چکیده
Peroxisome proliferator-activated receptor gamma (PPAR gamma) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPAR gamma-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPAR gamma activity, thus we hypothesized that a PPAR gamma agonist may exert physiologic effects via the angiotensin II type 1(A) receptor (AT1(A)R). In AT1(A)R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPAR gamma agonist troglitazone (Trog) enhanced AT1(A)R internalization and recruitment of endogenous beta-arrestin 1/2 (beta arr1/2) to the AT1(A)R. A fluorescence assay to measure diacylglycerol (DAG) accumulation showed that although Ang II induced AT1(A)R-G(q) protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of beta arr1/2 was selective to AT1(A)R as the response was prevented by an ARB- and Trog-mediated beta arr1/2 recruitment to beta1-adrenergic receptor (beta 1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be beta arr2-dependent, as cardiomyocytes isolated from beta arr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPAR gamma agonist Trog acts at the AT1(A)R to simultaneously block G(q) protein activation and induce the recruitment of beta arr1/2, which leads to an increase in cardiomyocyte contractility.
منابع مشابه
Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2.
Stimulation of a mutant angiotensin type 1A receptor (DRY/AAY) with angiotensin II (Ang II) or of a wild-type receptor with an Ang II analog ([sarcosine1,Ile4,Ile8]Ang II) fails to activate classical heterotrimeric G protein signaling but does lead to recruitment of beta-arrestin 2-GFP and activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) (maximum stimulation approximately 5...
متن کاملBeta-arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes.
The G protein-coupled receptor kinases (GRKs) and beta-arrestins, families of molecules essential to the desensitization of G protein-dependent signaling via seven-transmembrane receptors (7TMRs), have been recently shown to also transduce G protein-independent signals from receptors. However, the physiologic consequences of this G protein-independent, GRK/beta-arrestin-dependent signaling are ...
متن کاملDetermination of the exact molecular requirements for type 1 angiotensin receptor epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy.
Major interest surrounds how angiotensin II triggers cardiac hypertrophy via epidermal growth factor receptor transactivation. G protein-mediated transduction, angiotensin type 1 receptor phosphorylation at tyrosine 319, and β-arrestin-dependent scaffolding have been suggested, yet the mechanism remains controversial. We examined these pathways in the most reductionist model of cardiomyocyte gr...
متن کاملSelectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance.
Biased G protein-coupled receptor ligands engage subsets of the receptor signals normally stimulated by unbiased agonists. However, it is unclear whether ligand bias can elicit differentiated pharmacology in vivo. Here, we describe the discovery of a potent, selective β-arrestin biased ligand of the angiotensin II type 1 receptor. TRV120027 (Sar-Arg-Val-Tyr-Ile-His-Pro-D-Ala-OH) competitively a...
متن کاملReceptor/beta-arrestin complex formation and the differential trafficking and resensitization of beta2-adrenergic and angiotensin II type 1A receptors.
Beta-arrestins target G protein-coupled receptors (GPCRs) for endocytosis via clathrin-coated vesicles. Beta-arrestins also become detectable on endocytic vesicles in response to angiotensin II type 1A receptor (AT1AR), but not beta2-adrenergic receptor (beta2AR), activation. The carboxyl-terminal tails of these receptors contribute directly to this phenotype, since a beta2AR bearing the AT1AR ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 396 4 شماره
صفحات -
تاریخ انتشار 2010